

PERSONAL LEARNER CHECKLIST KS4

GCSE Physics (Combined)

Parent Curriculum Information: Combined Science

Subject: Combined (Trilogy) Science

Year Group: 11

Subject Leader: Mr Bradley

Email address: g.bradley@becketonline.co.uk

What syllabus is being taught?	AQA Combined Science, Trilogy
What are the key topics and themes? When will they be	• Learners following a Combined Science pathway will sit two GCSEs in Science which are a combination of Biology, Chemistry and Physics content
taught?	• Both GCSEs offer the potential to sit Higher (grade 9 to 4) or Foundation (grade
How will my son or	5 to 1) papers
When do these	Ihere are six examinations in the summer of Year 11: two for Biology, two for Chemistry and two for Physics Each exam will last 1 hour and 15 minutes and
assessments take place?	is worth 70 marks. The "Required Practicals" taught during lesson time will also be assessed on the exams
	Biology Paper 1 - Cell Biology; Organisation; Infection and response; and Bioenergetics
	Biology Paper 2 - Homeostasis and response; Inheritance, variation and evolution; and Ecology
	Chemistry Paper 1 - Atomic structure and the periodic table; Bonding, structure, and the properties of matter; Quantitative chemistry; Chemical changes; and
	Energy changes
	Chemistry Paper 2 - The rate and extent of chemical change; Organic chemistry;
	Chemical analysis; Chemistry of the atmosphere; and Using resources Physics Paper 1 - Epergy: Electricity: Particle model of matter; and Atomic
	structure
	Physics Paper 2 - Forces; Waves; and Magnetism and electromagnetism
What can my son or	- Use a CGP Combined Science revision guide that they can purchase from the
daughter do for revision at	school
home? What materials are	- Make use of their classwork booklets
provided or available	- Make use of Seneca, through the following link:
online?	<u>www.senecalearning.com</u>
	- Make use of Quizier, through the following link:
	- Access BBC Bitesize, through the following link:
	www.bbc.co.uk/education/subjects/zrkw2hv
	- Attempt past papers by following this procedure:
	www.aqa.org.uk/exams-administration/exams-guidance/find-past-papers-and-
	mark-schemes
	-Access Physics and Maths tutor, through the following link:
	https://www.physicsandmathstutor.com/
	This contains revision materials for ALL sciences not just physics

Review P4.1.1 Energy

Can you?	
P4.1.1 Energy changes in a system and the ways energy is stored before and after a change	
Define what a system is	
Recall all energy stores	
Describe all energy changes for common systems	
Understand the difference between conduction, convection and radiation	
Describe with examples system changes that involve 'wasted' energy	
Understand what thermal conductivity of materials is	
Draw and use a Sankey diagram	
P4.1.1.2 Efficiency	
Calculate efficiency and percentage efficiency of energy systems	
Describe ways to increase the efficiency of an energy transfer (HT only)	
P4.1.3 Nation and global energy resources	
Recall the energy resources available for use in Earth	
Understand the difference between renewable and non-renewable energy resources	
Recall uses of energy resources	
Compare energy resources, knowing advantages and disadvantages for each	
Recall reliability of energy resources	
Describe the environmental impact of each energy resource	
Explain patterns and trends in the use of energy resources	
P4.1.1.2 Changes in energy	
Recall and use the equation:	
Kinetic energy = ½ x mass x (velocity) ²	
Use the equation:	
Elastic potential energy = ½ x spring constant x (extension) ²	
Recall and use the equation:	
Gravitational potential energy = mass x gravitational field strength x height	
Recall and use the equation:	
Work done = force x distance moved	
P4.1.1.4 Power	
Recall and use the equation:	
Power = <u>energy transferred</u>	
time	
Recall and use the equation:	
Power = <u>work done</u>	
time	

Review 4.2 Electricity

Can you?		\checkmark
P4.2.1 - Current, Potential Difference and Resistance		
Know the standard circuit symbols		
Be able to draw and interpret circuit diagrams		
Know that a complete circuit and a source of potential difference are needed for electrical charge		
to flow		
Know that a current is a flow of charge		
Know and be able to use the formula: charge = current x time		
Know that the current is the same at any point in a closed loop		
Recognise that the current through a component depends both on its resistance and the potential		
Know and be able to use the formula: potential difference = current x resistance		
Required Practical 3: Factors affecting the resistance of circuits		
Resistance of different lengths of wire and resistors in series and parallel	<u> </u>	
explain that for some resistors the value of resistance stays constant but that in others it can change as current changes		
Know that the resistance of an Ohmic conductor is directly proportional to the potential		
difference across it. This means that the resistance remains constant		
Understand that the resistance of a filament lamp increases as the current increases because it		
heats up		
Know that a diode only allows current to flow through it in one direction		
Know that the resistance of a thermistor decreases as temperature increases		
Know that the resistance of an LDR decreases as light intensity increases		
Be able to draw a circuit to measure the resistance of a component by measuring the current		
through it and the potential difference across it		
Required Practical 4: Measuring I-V characteristics		
Plot current v potential difference graphs for a resistor, a lamp and a diode		
P4.2.2 - Series and Parallel Circuits		
Know that components can be connected in series or in parallel		
Understand that, in series, the current is the same through each component		
Understand that, in series, the potential difference of the power supply is shared between the		
components		
Know that the total resistance of components in series is: $R_{total} = R_1 + R_2$		
Understand that, in parallel, the potential difference across each component is the same		
Understand that, in parallel, the current from the power supply is split up through the different		
components		
Recognise that the resistance of two resistors connected in parallel is less than the resistance of		
the smallest individual resistor		
Be able to describe the difference between series and parallel circuits		

Can you?		\checkmark
P4.2.3 – Domestic uses and safety	 	
Know mains electricity is an a.c.supply – 50 Hz and about 230V		
Be able to explain the difference between direct and alternating potential difference		
Know most electrical appliances are connected to the mains using 3-core cable		
Know that brown is live, blue is neutral, yellow/green is earth		
Know that the live wire carries the alternating pd from the supply		
Know that the neutral wire completes the circuit		
Know that the earth wire is a safety wire to stop the appliance becoming live		
Know that the earth wire only carries a current if there is a fault		
P4.2.4 – Energy transfers		
Know that power transfer in a circuit is related to the potential difference and the current		
Power = potential difference x current (P = V I)		
Know that power can also be calculated using:		
Power = $(current)^2 x$ resistance $(P = I^2R)$		
Know the correct units for each of the quantities		
Know that everyday electrical appliances cause energy transfers		
Recognise that the amount of energy an appliance transfers depends on how long it is switched		
on for and the power of the appliance		
Be able to describe the energy transfers in electrical appliances		
Recognise that work is done when charge flows in a circuit		
Know that the amount of energy transferred by electrical work can be calculated using the		
equation: energy transferred = power x time (E = P t)		
Know that energy can also be calculated using:		
energy transferred = charge x potential difference (E = Q V)		
Be able to explain how the power in a circuit device is related to the potential difference across it,		
the current through it and the energy transferred in a given time.		
Be able to describe, with examples, the relationship between the power ratings for domestic		
appliances and the changes in stored energy when they are in use.		
Know that the National Grid is a system of cables and transformers linking power stations to		
consumers		
Know that step-up transformers increase the voltage and step-down transformers decrease the		
voltage		
Be able to explain why the National Grid system is an efficient way to transfer energy		

Review 4.3 Particle Model of Matter

Can you?		
P4.3.1 – Changes of state and the particle model		
Know that density is defined by the equation: density = mass / volume		
Be able to draw diagrams to model the differences between solids, liquids and gases		
Be able to explain differences in density between the different states of matter in terms of the		
arrangement of atoms or molecules		
Required Practical 5: Measuring density		
Measuring density of regular shaped objects, irregular shaped objects and liquids		
P4.3.2 – Internal Energy and Energy transfers		
Be able to describe changes of state and physical and chemical changes		
Understand that internal energy is the total kinetic energy and potential energy of the particles		
that make up a system		
Know that heating increases the internal energy of a system and that this either raises the		
temperature of the system or produces a change of state		
Know that, if the temperature of a system increases, this increase in temperature depends on the		
energy supplied, the mass of the substance and the material it is made from		
Be able to use the equation:		
change in thermal energy = mass x specific heat capacity x temperature change		
Know that the specific heat capacity is the energy needed to heat up 1 kg of a substance by 1 °C		
Know that the energy needed for a substance to change state is called latent heat		
Know that specific latent heat is the energy needed to change the state of 1 kg of a substance		
Be able to use the equation:		
energy for a change of state = mass x specific latent heat		
Be able to interpret heating and cooling graphs		
P4.3.3 – Particle Model and Pressure		
Know that particles in a gas are in constant random motion and the kinetic energy of molecules is		
related to temperature		
Recognise that, if volume doesn't change, increasing temperature of a gas increases its pressure		

Review P4.4 Atomic Structure

Can you?		
P4.4.1 The structure of an atom		
Recall the basic structure of an atom		
Recall the name of each particle in an atom, their charge and mass		
Understand that most of the mass of an atom is in the nucleus		
Recall the radius of an atom is very small (1 x 10^{-10} meters)		
Recall electron arrangements in shells at different distances to the nucleus		
Recall the number of protons is equal to the number of electrons in the nucleus, therefore atoms		
have no overall charge		
Define the mass number		
Define the atomic number		
Understand and use the following notation:		
²³ ₁₁ Na		
Define an isotope		
Relate difference between isotopes to differences in their identities, charges and masses		
P4.4.1.3 The development of the model of the atom		
Explain new experimental evidence may lead to a scientific model being changed or replaced		
Recall the history and development of the structure of the atom		
Describe the scattering experiment and how it lead to change in the the atomic model		
Describe the difference between the plum pudding model and nuclear model of the atom		
P4.4.3.1 Background radiation		
Understand what background radiation is and where it comes from, both man-made and natural		
sources		
Understand that background radiation may be affected by location or occupation		
Radiation dose is measured in Sieverts (Sv)		
1000 millisieverts (mSv) = I Sievert (Sv)		

P4.2.2.1 Radioactive decay and nuclear radiation		
Define radioactive decay is and know that it is random		
Define activity and know the unit is the Becquerel (Bq)		
Know the count rate is the number of decays recorded each second by a detector		
Recall what can be emitted by nuclear radiation (α , β , γ , n)		
Recall what makes up an alpha (α) particle		
Recall what makes up a beta (β) particle		
Recall what makes up a gamma (γ) ray		
Describe the properties of α , β and γ including penetration of materials, range in air and ionising		
power		
Apply knowledge of α , β and γ to evaluate which is the best source to use in different situations		
P4.4.2.2 Nuclear equations		T
In a nuclear equation an alpha particle may be represented by the symbol:		
⁴ ₂ He		
In a nuclear equation a beta particle may be represented by the symbol:		
0		
_1 e		
Understand how to complete nuclear equations for alpha decay such as:		
$^{219}_{86}$ radon $\longrightarrow ^{215}_{84}$ polonium + $^{4}_{2}$ He		
by balancing the mass numbers and/or atomic numbers on either side of the arrow		
Understand how to complete nuclear equations for beta decay such as:		
$^{14}_{6}$ carbon \longrightarrow $^{14}_{7}$ nitrogen + $^{0}_{-1}$ e		
by balancing the mass numbers and/or atomic numbers on either side of the arrow		
Know the emission of a gamma ray does not affect the element in any way		
P4.4.2.3 Half-lives and the random nature of decay		T
Understand what half-life of an radioactive isotope is		
Explain what a half-life is and how it is related to the random nature of decay		
Determine the half-life of a radioactive isotope from given information		
Calculate amount of radioactive source left after a given number of half-lives and give this answer		
as a ratio (HI only)		
P4.4.3.3 Uses of nuclear radiation		1
Describe and evaluate the uses of radiations in exploration of internal organise and the control		
and destruction of unwanted tissue		
PA 4.2.4 Padiagetive contemination		
P4.4.2.4 Radioactive contamination		1
Define irradiation and contamination and know the nazard form each		
Explain now the type of radiation emitted effects the level of hazard		
Compare nazaros associated with contamination and irradiation		
know suitable precautions that must be taken to protect against any hazard Using radioactive		
Sources may produce	<u> </u>	
Understand the importance of subliching scientific papers and paper review of these papers		
onderstand the importance of publishing scientific papers and peer review of these papers		1

Review 4.5 Forces parts 1,2,3

Can you?		
P4.5.1 – Forces and their interactions		
Know that scalar quantities have magnitude only		
Know that vector quantities have both magnitude and direction		
Recognise that a vector quantity can be represented by an arrow giving the length and direction		
Know that a force is a push or a pull that acts on an object and that they can be either contact		
forces or non-contact forces		
Be able to give examples of contact and non-contact forces and know that force is a vector		
quantity		
Know that weight is the force acting on an object due to gravity	 	
Know that the weight of an object depends on the gravitational field strength at that point	 	
Know that the weight of an object can be calculated using the equation:		
weight = mass x gravitational field strength W = m g	 	
Know that gravitational field strength, g, is measured in newtons	 	
Know that the weight of an object is directly proportional to the mass of the object	 	
Know that weight is measured using a newton-meter	 	
Know that the resultant force acting on an object is the single force that has the same effect as all		
the other forces together	 	
Be able to calculate the resultant of two forces acting in the same line	 	
Be able to describe the forces acting on an object (HT)	 	
Be able to use free body force diagrams (HT)	 	
Know that a single force can be resolved into two components acting at right angles to each other		
- the two component forces together have the same effect as the single force (HT)	 	
Be able to use vector diagrams to illustrate resolution of forces (HT)		
P4.5.2 – Work done and energy transfer		
Know that work is done when a force causes an object to move	 	
know that the work done by a force can be calculated using the equation: work done $-$ force x distance moved $W = E c$		
Work done – Torce X distance moved W – F S	 	
Linderstand that one joule of work is done when a force of one newton causes a displacement of	 	
one metre		
Be able to describe the energy transfer involved when work is done		
Know that work done against frictional forces acting on the object causes a rise in the	 	
temperature of the object		
P4.5.3 – Forces and elasticity		
Be able to give examples of the forces involved in stretching, bending or compressing an object	<u> </u>	
Be able to explain why, to change the shape of an object, more than one force has to be applied		
Be able to explain the difference between elastic deformation and inelastic deformation caused		
by stretching forces		
Know that the extension of an elastic object, such as a spring, is directly proportional to the force		
applied		
Know that force = spring constant x extension F = k e		
Know that a force that stretches (or compresses) a spring does work and elastic potential energy		
is stored in the spring		
Be able to describe the difference between a linear and non-linear relationships between force		
and extension		
Be able to calculate spring constants from straight line graphs		
Be able to calculate work done stretching an object using the equation:		
elastic potential energy = 0.5 x spring constant x (extension) ² Ee = $\frac{1}{2}$ k e ²		
Required Practical 6: Investigate the relationship between force and extension for a spring		
Calculating spring constant from a graph		

P4.5.6 – Forces and motion	
Know that distance is how far an object moves and is a scalar quantity	
Know that displacement is a vector and is how far an object moves in a certain direction	
Know that speed is a scalar quantity	
Know typical speeds including walking (1.5 m/s), running (3 m/s), cycling (6 m/s)	
Know the speed of sound in air is 330 m/s	
Be able to calculate the distance moved by an object at constant speed using the equation:	
distance travelled = speed x time s = v t	
Be able to calculate average speed for non-uniform motion	
Know that velocity is a vector quantity and is the speed in a certain direction	
Be able to explain that motion in a circle involves constant speed but changing velocity because direction is changing (HT)	
Know that the distance travelled by an object can be represented by a distance-time graph	
Know that the distance travelled by an object can be represented by a distance-time graph	
Know that the speed can be calculated from the gradient of a distance-time graph	
distance-time graph (HT)	
Know that acceleration of an object can be calculated using the equation:	
acceleration = <u>change in velocity</u> $a = \Delta v$	
time taken t	
Know that an object that slows down is decelerating	
Know that the acceleration of an object can be calculated from the gradient of a velocity-time graph	
Know that the distance travelled by an object can be calculated from the area under a velocity-	
time graph (HT)	
Be able to draw and interpret velocity-time graphs	
Be able to use the following equation for an object with uniform acceleration:	
(final velocity) ² - (initial velocity) ² = 2 x acceleration x distance $(v^2 - u^2 = 2 a s)$	
Know that an object falling through a fluid initially accelerates due to the force of gravity.	
Eventually the resultant force will be zero and the object will move at terminal velocity	
Understand Newton's 1 st Law	
Know that, if the resultant force acting on an object is zero then the object will not change its motion	
Know that the tendency of objects to continue in their state of rest or uniform motion is called	
inertia (HT)	
Understand Newton's 2 nd Law	
Know that the acceleration of an object is proportional to the resultant force and inversely	
proportional to the mass of the object	
force = mass x acceleration F = m a	
Required Practical 7 – Investigate the effect of varying the force on the acceleration of an object	
of constant mass, and the effect of varying the mass of an object on the acceleration produced	
by a constant force. Using light gates.	
Understand Newton's 3 rd Law	
Know that, when two objects interact, the forces they exert on each other are equal and opposite	
Know that the stopping distance of a vehicle is equal to the thinking distance added to the	
braking distance	
Know that numan reaction times vary between 0.2s and 0.9s	
Recognise that reaction time can be affected by tiredness, drugs, alconol and distractions	
Be able to describe a method to measure reaction time	
condition of the vehicle	
Know that when a force is applied to the brakes of a vehicle work is done by the friction force	
between the brakes and the wheel, kinetic energy is reduced and the temperature of the brakes	
increases	
Know that, the greater the speed, the greater the braking force required	

P4.5.7 - Momentum		
Momentum is defined by the equation:		
momentum = mass x velocity p = m v (HT)		
Know that momentum is measured in kilogram metres per second kgm/s (HT)		
Know that, in a closed system, the total momentum before an event is equal to the total		
momentum after the event – Conservation of momentum (HT)		

Review P4.6.1 Waves

Can you?		
P4.6.1.1 Transverse and longitudinal waves		
Describe transverse and longitudinal waves		
Recall which type of wave travels through solids and which through liquids		
Describe the difference between transverse and longitudinal waves		
Explain that when a wave travels through a material it is not the material that moves but the wave		
P4.6.1.2 Properties of waves	 	
Describe wave motion in terms of amplitude, wavelength, frequency and period		
Define the term amplitude and be able to label it on a diagram		
Define the term wavelength and be able to label it on a diagram		
Define the term frequency		
Recall and use the equation:		
Period = <u>1</u> .		
frequency		
Recall the wave speed is the speed at which the energy is transferred through the medium		
Recall and use the equation:		
Wave speed = frequency x wavelength		
Describe a method to measure air speed		
Describe a method to measure wave speed		
Show how changes in velocity, frequency and wavelength are inter-related in the transmission of		
sound waves from one medium to another (HT only)		
Describe Required Practical 8 – The ripple tank		
P4.6.1.5 Waves for detection and exploration	 	
Explain how the differences in velocity, absorption and reflection between different types of		
waves in solids and liquids can be used for detection and exploration of structures that cannot be		
seen by eye		
Understand ultrasound waves have a frequency higher than the upper limit of human hearing		
Understand ultrasound waves are partially reflected when they meet a boundary between two		
different media		
Explain how ultrasound waves are used for both medical and industrial imaging		
Understand the difference between P waves and S waves		
Explain how P and S waves can be used to determine the structure of the Earth		
Describe how high frequency sound waves is used to detect objects in deep water and measure		
deep water		

Review P4.6.2 Electromagnetic Spectrum

Can you?		
P4.6.2.1 Types of electromagnetic spectrum		
Recall that electromagnetic waves are transverse and transfer energy from source to absorber		
Electromagnetic waves form a continuous spectrum and travel at the same velocity through a		
vacuum or air		
Recall the spectrum and know which has the longest wavelength, highest frequency and most		
energy		
Recall which waves are ionising		
P4.6.2.2 Properties of electromagnetic waves 1		
Understand substances may absorb, transmit, refract and reflect electromagnetic waves in ways		
that vary with wavelength (HT only)		
Understand why refraction happens (HT only)		
Construct ray diagrams to illustrate the refraction if a wave at a boundary between two different		
media		
Use wave front diagrams to explain refraction (HT only)		
Describe and explain Required Practical 10 Leslie Cubes - absorption and radiation		
P4.6.2.3 Properties of electromagnetic waves 2		
Recall radio waves can be produced by oscillations in electrical circuits (HT only)		
Describe and explain using radio waves as carrier waves (HT only)		
Understand where gamma rays come from		
Understand the hazardous effect of UV, x-rays and gamma rays on humans		
Recall the unit of radiation dose		
P4.6.2.4 Uses and applications of electromagnetic waves	·	
Know practical applications for each wave type in the electromagnetic spectrum		
Explain why each type of electromagnetic wave is suitable for the practical application (HT only)		

Review 4.7 – Magnetism and Electromagnetism

Can you?	
P4.7.1 – Permanent and induced magnetism, magnetic forces and fields	
Know that the poles of a magnet are where the magnetic forces are strongest	
Be able to describe the attraction and repulsion between like and unlike poles	
Be able to describe the differences between permanent and induced magnets	
Know that the magnetic materials are iron, steel, nickel and cobalt	
Know that the region around a magnet where a force acts on another magnet or magnetic material is called a magnetic field	
Recognise that the direction of a magnetic field is the direction of the force on a north pole	
Know how to plot the shape of a magnetic field using a compass	
Know that a compass contains a small magnet that moves in the Earth's magnetic field	
P4.7.2 – The motor effect	
Know that when a current is passed through a conducting wire a magnetic field is produced	
around the wire	
Understand that the strength of this field depends on the current and on the distance from the wire	
Recognise that the strength of the magnetic field can be increased by coiling the wire into a solenoid and that the shape of this field is similar to that of a bar magnet	
Know that adding an iron core increases the strength of the field	
Understand that a current carrying conductor placed in a magnetic field experiences a force. This is called to motor effect (HT only)	
Know that Fleming's Left Hand Rule represents the relative directions of the current, the force and the magnetic field (HT only)	
Be able to use the equation:	
force = magnetic flux density x current x length (HT only)	
Know that a coil of wire carrying a current in a magnetic field tends to rotate and this is the basis of an electric motor (HT only)	